3.167 \(\int \frac{(2+3 x^2) (3+5 x^2+x^4)^{3/2}}{x^4} \, dx\)

Optimal. Leaf size=314 \[ \frac{65 \sqrt{\frac{2}{3 \left (5+\sqrt{13}\right )}} \sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) \text{EllipticF}\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right ),\frac{1}{6} \left (5 \sqrt{13}-13\right )\right )}{\sqrt{x^4+5 x^2+3}}-\frac{\left (10-9 x^2\right ) \left (x^4+5 x^2+3\right )^{3/2}}{15 x^3}-\frac{13 \left (24-5 x^2\right ) \sqrt{x^4+5 x^2+3}}{15 x}+\frac{949 x \left (2 x^2+\sqrt{13}+5\right )}{30 \sqrt{x^4+5 x^2+3}}-\frac{949 \sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} \sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) E\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{30 \sqrt{x^4+5 x^2+3}} \]

[Out]

(949*x*(5 + Sqrt[13] + 2*x^2))/(30*Sqrt[3 + 5*x^2 + x^4]) - (13*(24 - 5*x^2)*Sqrt[3 + 5*x^2 + x^4])/(15*x) - (
(10 - 9*x^2)*(3 + 5*x^2 + x^4)^(3/2))/(15*x^3) - (949*Sqrt[(5 + Sqrt[13])/6]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6
+ (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticE[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])
/6])/(30*Sqrt[3 + 5*x^2 + x^4]) + (65*Sqrt[2/(3*(5 + Sqrt[13]))]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + Sqrt[
13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticF[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/Sqrt[3
+ 5*x^2 + x^4]

________________________________________________________________________________________

Rubi [A]  time = 0.164134, antiderivative size = 314, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {1271, 1189, 1099, 1135} \[ -\frac{\left (10-9 x^2\right ) \left (x^4+5 x^2+3\right )^{3/2}}{15 x^3}-\frac{13 \left (24-5 x^2\right ) \sqrt{x^4+5 x^2+3}}{15 x}+\frac{949 x \left (2 x^2+\sqrt{13}+5\right )}{30 \sqrt{x^4+5 x^2+3}}+\frac{65 \sqrt{\frac{2}{3 \left (5+\sqrt{13}\right )}} \sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) F\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{\sqrt{x^4+5 x^2+3}}-\frac{949 \sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} \sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) E\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{30 \sqrt{x^4+5 x^2+3}} \]

Antiderivative was successfully verified.

[In]

Int[((2 + 3*x^2)*(3 + 5*x^2 + x^4)^(3/2))/x^4,x]

[Out]

(949*x*(5 + Sqrt[13] + 2*x^2))/(30*Sqrt[3 + 5*x^2 + x^4]) - (13*(24 - 5*x^2)*Sqrt[3 + 5*x^2 + x^4])/(15*x) - (
(10 - 9*x^2)*(3 + 5*x^2 + x^4)^(3/2))/(15*x^3) - (949*Sqrt[(5 + Sqrt[13])/6]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6
+ (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticE[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])
/6])/(30*Sqrt[3 + 5*x^2 + x^4]) + (65*Sqrt[2/(3*(5 + Sqrt[13]))]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + Sqrt[
13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticF[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/Sqrt[3
+ 5*x^2 + x^4]

Rule 1271

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[((f
*x)^(m + 1)*(a + b*x^2 + c*x^4)^p*(d*(m + 4*p + 3) + e*(m + 1)*x^2))/(f*(m + 1)*(m + 4*p + 3)), x] + Dist[(2*p
)/(f^2*(m + 1)*(m + 4*p + 3)), Int[(f*x)^(m + 2)*(a + b*x^2 + c*x^4)^(p - 1)*Simp[2*a*e*(m + 1) - b*d*(m + 4*p
 + 3) + (b*e*(m + 1) - 2*c*d*(m + 4*p + 3))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c
, 0] && GtQ[p, 0] && LtQ[m, -1] && m + 4*p + 3 != 0 && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1189

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1099

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[((2*a + (b +
q)*x^2)*Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticF[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)]
)/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSq
rtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1135

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(x*(b +
q + 2*c*x^2))/(2*c*Sqrt[a + b*x^2 + c*x^4]), x] - Simp[(Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*Sqrt[(2*a + (
b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticE[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)])/(2*c*Sqrt[a + b*x^2
 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; Fre
eQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{\left (2+3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{x^4} \, dx &=-\frac{\left (10-9 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{15 x^3}-\frac{1}{5} \int \frac{\left (-104-65 x^2\right ) \sqrt{3+5 x^2+x^4}}{x^2} \, dx\\ &=-\frac{13 \left (24-5 x^2\right ) \sqrt{3+5 x^2+x^4}}{15 x}-\frac{\left (10-9 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{15 x^3}+\frac{1}{15} \int \frac{1950+949 x^2}{\sqrt{3+5 x^2+x^4}} \, dx\\ &=-\frac{13 \left (24-5 x^2\right ) \sqrt{3+5 x^2+x^4}}{15 x}-\frac{\left (10-9 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{15 x^3}+\frac{949}{15} \int \frac{x^2}{\sqrt{3+5 x^2+x^4}} \, dx+130 \int \frac{1}{\sqrt{3+5 x^2+x^4}} \, dx\\ &=\frac{949 x \left (5+\sqrt{13}+2 x^2\right )}{30 \sqrt{3+5 x^2+x^4}}-\frac{13 \left (24-5 x^2\right ) \sqrt{3+5 x^2+x^4}}{15 x}-\frac{\left (10-9 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{15 x^3}-\frac{949 \sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} \sqrt{\frac{6+\left (5-\sqrt{13}\right ) x^2}{6+\left (5+\sqrt{13}\right ) x^2}} \left (6+\left (5+\sqrt{13}\right ) x^2\right ) E\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{30 \sqrt{3+5 x^2+x^4}}+\frac{65 \sqrt{\frac{2}{3 \left (5+\sqrt{13}\right )}} \sqrt{\frac{6+\left (5-\sqrt{13}\right ) x^2}{6+\left (5+\sqrt{13}\right ) x^2}} \left (6+\left (5+\sqrt{13}\right ) x^2\right ) F\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{\sqrt{3+5 x^2+x^4}}\\ \end{align*}

Mathematica [C]  time = 0.3355, size = 247, normalized size = 0.79 \[ \frac{-13 i \sqrt{2} \left (73 \sqrt{13}-65\right ) \sqrt{\frac{-2 x^2+\sqrt{13}-5}{\sqrt{13}-5}} \sqrt{2 x^2+\sqrt{13}+5} x^3 \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{\frac{2}{5+\sqrt{13}}} x\right ),\frac{19}{6}+\frac{5 \sqrt{13}}{6}\right )+4 \left (9 x^{10}+145 x^8+192 x^6-1405 x^4-1155 x^2-90\right )+949 i \sqrt{2} \left (\sqrt{13}-5\right ) \sqrt{\frac{-2 x^2+\sqrt{13}-5}{\sqrt{13}-5}} \sqrt{2 x^2+\sqrt{13}+5} x^3 E\left (i \sinh ^{-1}\left (\sqrt{\frac{2}{5+\sqrt{13}}} x\right )|\frac{19}{6}+\frac{5 \sqrt{13}}{6}\right )}{60 x^3 \sqrt{x^4+5 x^2+3}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((2 + 3*x^2)*(3 + 5*x^2 + x^4)^(3/2))/x^4,x]

[Out]

(4*(-90 - 1155*x^2 - 1405*x^4 + 192*x^6 + 145*x^8 + 9*x^10) + (949*I)*Sqrt[2]*(-5 + Sqrt[13])*x^3*Sqrt[(-5 + S
qrt[13] - 2*x^2)/(-5 + Sqrt[13])]*Sqrt[5 + Sqrt[13] + 2*x^2]*EllipticE[I*ArcSinh[Sqrt[2/(5 + Sqrt[13])]*x], 19
/6 + (5*Sqrt[13])/6] - (13*I)*Sqrt[2]*(-65 + 73*Sqrt[13])*x^3*Sqrt[(-5 + Sqrt[13] - 2*x^2)/(-5 + Sqrt[13])]*Sq
rt[5 + Sqrt[13] + 2*x^2]*EllipticF[I*ArcSinh[Sqrt[2/(5 + Sqrt[13])]*x], 19/6 + (5*Sqrt[13])/6])/(60*x^3*Sqrt[3
 + 5*x^2 + x^4])

________________________________________________________________________________________

Maple [A]  time = 0.016, size = 260, normalized size = 0.8 \begin{align*} -{\frac{67}{3\,x}\sqrt{{x}^{4}+5\,{x}^{2}+3}}+{\frac{3\,{x}^{3}}{5}\sqrt{{x}^{4}+5\,{x}^{2}+3}}+{\frac{20\,x}{3}\sqrt{{x}^{4}+5\,{x}^{2}+3}}+780\,{\frac{\sqrt{1- \left ( -5/6+1/6\,\sqrt{13} \right ){x}^{2}}\sqrt{1- \left ( -5/6-1/6\,\sqrt{13} \right ){x}^{2}}{\it EllipticF} \left ( 1/6\,x\sqrt{-30+6\,\sqrt{13}},5/6\,\sqrt{3}+1/6\,\sqrt{39} \right ) }{\sqrt{-30+6\,\sqrt{13}}\sqrt{{x}^{4}+5\,{x}^{2}+3}}}-{\frac{11388}{5\,\sqrt{-30+6\,\sqrt{13}} \left ( \sqrt{13}+5 \right ) }\sqrt{1- \left ( -{\frac{5}{6}}+{\frac{\sqrt{13}}{6}} \right ){x}^{2}}\sqrt{1- \left ( -{\frac{5}{6}}-{\frac{\sqrt{13}}{6}} \right ){x}^{2}} \left ({\it EllipticF} \left ({\frac{x\sqrt{-30+6\,\sqrt{13}}}{6}},{\frac{5\,\sqrt{3}}{6}}+{\frac{\sqrt{39}}{6}} \right ) -{\it EllipticE} \left ({\frac{x\sqrt{-30+6\,\sqrt{13}}}{6}},{\frac{5\,\sqrt{3}}{6}}+{\frac{\sqrt{39}}{6}} \right ) \right ){\frac{1}{\sqrt{{x}^{4}+5\,{x}^{2}+3}}}}-2\,{\frac{\sqrt{{x}^{4}+5\,{x}^{2}+3}}{{x}^{3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^4,x)

[Out]

-67/3*(x^4+5*x^2+3)^(1/2)/x+3/5*x^3*(x^4+5*x^2+3)^(1/2)+20/3*x*(x^4+5*x^2+3)^(1/2)+780/(-30+6*13^(1/2))^(1/2)*
(1-(-5/6+1/6*13^(1/2))*x^2)^(1/2)*(1-(-5/6-1/6*13^(1/2))*x^2)^(1/2)/(x^4+5*x^2+3)^(1/2)*EllipticF(1/6*x*(-30+6
*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2))-11388/5/(-30+6*13^(1/2))^(1/2)*(1-(-5/6+1/6*13^(1/2))*x^2)^(1/2)*(1
-(-5/6-1/6*13^(1/2))*x^2)^(1/2)/(x^4+5*x^2+3)^(1/2)/(13^(1/2)+5)*(EllipticF(1/6*x*(-30+6*13^(1/2))^(1/2),5/6*3
^(1/2)+1/6*39^(1/2))-EllipticE(1/6*x*(-30+6*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2)))-2*(x^4+5*x^2+3)^(1/2)/x
^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}}{\left (3 \, x^{2} + 2\right )}}{x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^4,x, algorithm="maxima")

[Out]

integrate((x^4 + 5*x^2 + 3)^(3/2)*(3*x^2 + 2)/x^4, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (3 \, x^{6} + 17 \, x^{4} + 19 \, x^{2} + 6\right )} \sqrt{x^{4} + 5 \, x^{2} + 3}}{x^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^4,x, algorithm="fricas")

[Out]

integral((3*x^6 + 17*x^4 + 19*x^2 + 6)*sqrt(x^4 + 5*x^2 + 3)/x^4, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (3 x^{2} + 2\right ) \left (x^{4} + 5 x^{2} + 3\right )^{\frac{3}{2}}}{x^{4}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**2+2)*(x**4+5*x**2+3)**(3/2)/x**4,x)

[Out]

Integral((3*x**2 + 2)*(x**4 + 5*x**2 + 3)**(3/2)/x**4, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}}{\left (3 \, x^{2} + 2\right )}}{x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^4,x, algorithm="giac")

[Out]

integrate((x^4 + 5*x^2 + 3)^(3/2)*(3*x^2 + 2)/x^4, x)